
円錐曲線の媒介変数表示
参拾萬数学工房

（https://300000.net/）
本稿では，xy平面上の任意の円錐曲線 F(x, y) = 0を，「楕円」と「双曲線」と「放物線」
の区別をすることなく，また位置や向きに関係なく，すべて同じ手法で媒介変数表示する方
法を述べる。

§ 1 円錐曲線の決定
§ 1.1 楕円の決定
正円でない楕円において，長軸上にある頂点の 1つを Aとし，2つの焦点のうち Aに近
い方の焦点を C，焦点 Cと対になる準線を ℓ，準線 ℓと長軸との交点を Eとする。また，C

を通り準線 ℓに平行な直線と楕円との 2つの交点の 1つを Dとし，Dから準線 ℓに下ろし
た垂線の足を Hとする。
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上図のように，EA = p，AC = q，CD = r (脚注 1)，EC = DH = sとする。この楕円の離
心率が e（ただし 0 < e < 1）であるとき，定数 p,q,r,s,eに対して，次の関係式が成り立つ。� �

• q : p = r : s = e : 1　（∵離心率の定義より）
• s = p+ q　（∵上図より明らか）� �

これらの関係式から，定数 p,q,r,s,e のうちのいずれか 2つが与えられれば，他のすべて
がただ一つに定まることがわかる。

例えば pと qが与えられている場合は，r,s,eはそれぞれ pと qを用いて

r =
q

p
(p+q)， s = p+q， e =

q

p

(脚注 1) rは，楕円の「半直弦」と呼ばれる値である。双曲線（§ 1.2），放物線（§ 1.3）についても同様。
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と求まる。
あるいは，例えば rと sが与えられている場合は，p,q,eはそれぞれ rと sを用いて

p =
s2

r+s
， q =

rs

r+s
， e =

r

s

と求まる。

§ 1.2 双曲線の決定
双曲線において，頂点の 1つをAとし，2つの焦点のうち Aに近い方の焦点を C，焦点 C

と対になる準線を ℓ，準線 ℓと軸との交点を Eとする。また，Cを通り準線 ℓに平行な直線
と双曲線との 2つの交点の 1つを Dとし，Dから準線 ℓに下ろした垂線の足を Hとする。
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上図のように，EA = p，AC = q，CD = r，EC = DH = sとする。この双曲線の離心
率が e（ただし e > 1）であるとき，定数 p,q,r,s,eに対して，次の関係式が成り立つ。� �

• q : p = r : s = e : 1　（∵離心率の定義より）
• s = p+ q　（∵上図より明らか）� �

これらの関係式から，定数 p,q,r,s,e のうちのいずれか 2つが与えられれば，他のすべて
がただ一つに定まることがわかる。

例えば pと qが与えられている場合は，r,s,eはそれぞれ pと qを用いて

r =
q

p
(p+q)， s = p+q， e =

q

p

と求まる。
あるいは，例えば rと sが与えられている場合は，p,q,eはそれぞれ rと sを用いて

p =
s2

r+s
， q =

rs

r+s
， e =

r

s

と求まる。

#2



§ 1.3 放物線の決定
放物線において，頂点を A，焦点を C，準線を ℓ，準線 ℓと軸との交点を Eとする。また，

Cを通り準線 ℓに平行な直線と放物線との 2つの交点の 1つを Dとし，Dから準線 ℓに下
ろした垂線の足を Hとする。
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上図のように，EA = p，AC = q，CD = r，EC = DH = sとするとき，定数 p,q,r,sに
対して，次の関係式が成り立つ。� �

• q : p = r : s = 1 : 1，すなわち p = q，s = r　（∵放物線の定義より）
• s = 2q　（∵ p+ q = sと p = qより）� �

これらの関係式から，定数 p,q,r,sのうちのいずれか 1つが与えられれば，他のすべてが
ただ一つに定まることがわかる。

＊　＊　＊

以上，わざわざ「（正円でない）楕円」「双曲線」「放物線」に分類して述べてきたが，結局
のところ，どの場合においても，p,q,r,s,eのうちの 2つが与えられれば円錐曲線の形状が確
定することが確かめられた (脚注 2) 。
次節では，定数 rと sを与えて得られる円錐曲線について考察する。

(脚注 2) 放物線の場合は離心率 eが 1であることが予めわかっている。
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§ 2 円錐曲線の媒介変数表示
§ 2.1 射影による円の写像としての円錐曲線

2つの正の定数 r，sが与えられているものとする。
3次元ユークリッド空間 E3 内に直線 ℓをとり，直線 ℓとの距離が sであるように点 Cを
とる。また，直線 ℓと点 Cによって定まる平面を αとする。
点 Cから直線 ℓに下ろした垂線の足を Eとし（すなわち EC = sである），点 Eを通り平
面 αに垂直な直線をとる。そして，この直線上に，EL = sとなる点 Lをとる。
さらに，点 Cを中心とする半径 rの円を，直線 ℓと平行に，かつ平面 αと垂直になるよう
におく。この円を Xと名付ける。
以上のことを図示すると，次の図 1のようになる。

L

E C
平面 α

円 X

直線 ℓ
図 1

定理� �
　上のように定めた図形に対して，円 X の周上を動く動点を P とし，直線 LP と平面
αとの交点を Qとする。（→図 2）
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直線 ℓ
図 2

　このとき，動点 Pに伴って動く点 Q の軌跡は，点 Cを焦点，直線 ℓ を準線とする，
離心率 r

s
の円錐曲線となる。� �
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証明
はじめに，この 3次元ユークリッド空間 E3 に，直線 CEを x軸，直線 ℓに平行で点 Cを
通る直線を y 軸，直線 LEに平行で点 Cを通る直線を z軸とする座標系を導入する。ただ
し，x軸に関しては Eから Cに向かう方向を正の向きとし，y軸の向きは任意で，z軸はこ
の 3軸が右手系をなすように定めるものとする。（→図 3）
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図 3

このとき，平面 α は xy 平面であり，また点 C は (0, 0, 0)，点 E は (−s, 0, 0)，点 L は
(−s, 0, s)または (−s, 0,−s)である (脚注 3) 。
さらに，円 Xの周上を動く点 Pの座標は，媒介変数 θ（0 ≦ θ < 2π）を用いて

P(0, r sin θ, r cos θ)

と表すことができる (脚注 4) 。
s , r cos θであるとき (脚注 5) ，直線 LPと xy平面との交点 Qの座標は，ちょっとした計
算によって

Q
(

r cos θ
1− r

s
cos θ

,
r sin θ

1− r
s

cos θ
, 0

)
と求まる。そしてこのとき，

(脚注 3) 点 Lの z座標の正負は，平面 αに y軸を入れる際の方向の定め方によるとも言えるし，点 Lの取り方（点
Lを平面 αに対してどちら側にとるか）によるとも言える。なお，点 Lの z座標の正負は，本節の議論には
まったく影響がない。

(脚注 4) ここでは，z軸の正の向きを始線とする動径 CPの一般角を θとし，その範囲を 0 ≦ θ < 2πに制限した。な
お，本節においては動径 CPの回転の向きはどちらでも良いのだが，このあと § 2.2では，点 Lの z座標が
正の場合には「z軸の正の方向から y軸の正の方向への回転」を正の向きとし，点 Lの z座標が負の場合に
はその逆を正の向きとする。

(脚注 5) 「s , r cos θであるとき」とは，ざっくりと言えば「動点 Pが点 Lと同じ高さにないとき」である。
s > rならば円 Xの周上に s = r cos θを満たす位置はないが，s = rならば 1ヶ所，s < rならば 2ヶ所，円
Xの周上に s = r cos θを満たす位置が存在する。
そして，点 Pがその位置にあるとき，直線 LPは xy平面と交わらない。
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• 2点 C(0, 0, 0), Q
(

r cos θ
1− r

s
cos θ

,
r sin θ

1− r
s

cos θ
, 0

)
間の距離は，

CQ =

√(
r cos θ

1− r
s

cos θ

)2
+

(
r sin θ

1− r
s

cos θ

)2
+ 02

=

√(
r

1− r
s

cos θ

)2
·
(
cos2 θ+ sin2 θ

)
=

∣∣∣∣∣∣ r

1− r
s

cos θ

∣∣∣∣∣∣ = r∣∣∣1− r
s

cos θ
∣∣∣

• 点 Qと直線 ℓ（y軸）との距離を dとすると，

d =

∣∣∣∣∣∣ r cos θ
1− r

s
cos θ

− (−s)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ s

1− r
s

cos θ

∣∣∣∣∣∣ = s∣∣∣1− r
s

cos θ
∣∣∣

よって

CQ : d =
r∣∣∣1− r
s

cos θ
∣∣∣ :

s∣∣∣1− r
s

cos θ
∣∣∣

= r : s

ここで，rと sは定数であるから，媒介変数 θの値によらず（すなわち動点 Pの位置によ
らず），比 CQ : dは一定である。
したがって，点 Qの軌跡は，点 Cを焦点，直線 ℓを準線とする円錐曲線であり，その離
心率は r

s
である。 （証明終）

次に，この図形における s → ∞とした場合の極限を考える。
このとき，LE = EC = sと ∠LEC =

π

2
より，∠LCE =

π

4
（一定）である。したがって，

s → ∞とした場合，直線 LPは「xz平面上にある，x軸とのなす角が π

4
となる直線」とな

り，このとき交点 Qの軌跡は「半径 rの円」になる。
また，s → ∞としたときの点 Qの極限は，

lim
s→∞ Q = lim

s→∞
(

r cos θ
1− r

s
cos θ

,
r sin θ

1− r
s

cos θ
, 0

)
= (r cos θ, r sin θ, 0)

となる。この座標が「xy平面上の原点 Oを中心とする半径 rの円」の媒介変数表示を与え
ることは，一目瞭然であろう。
したがって，s → ∞ の場合まで考えることにすれば，この手法によって（正円の場合も
含めて）任意の円錐曲線をつくることができることがわかった。
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＊　＊　＊

ところで，この定理の証明で導入した座標系は，あくまでも証明が容易となるように設定
したに過ぎず，この定理自体は座標系のとり方によらず成り立つ。したがって，3次元ユー
クリッド空間 E3 内のどのような位置に点 Cと直線 ℓがあったとしても，同様に平面 α，円
X，および点 Lを設定することによって，「点 Cを焦点，直線 ℓを準線とする離心率 r

s
の円

錐曲線」および「点 Cを中心とする半径 rの円」を，平面 α上に描くことができる。

§ 2.2 円錐曲線の極方程式との関係
前節 § 2.1で考えた図形における線分 CQの長さ r∣∣∣1− r

s
cos θ

∣∣∣ は，r,sと離心率 eとの関

係式 r = esを利用して
CQ =

es

|1− e cos θ|
· · · 1O

と表すことができる。この形は，円錐曲線の極方程式

r =
ea

1+ e cos θ
· · · 2O

と酷似している。本節では，この 2者の関係について簡単に述べる。
まず， 1O式の sと 2O式の aは，文字が違うだけで同じものを表している。したがって， 1O

式と 2O式の実質的な違いは，「分母の絶対値の有無」と「分母第 2項の正負」の 2点である。
前者の違いは， 1O式の左辺 CQが 0以上であることに対して， 2O式の左辺 rは負の値も考
えることによる。また，後者の違いは，極形式における角 θの始線のとり方による。実際，
一方の θを θ+πと置換すれば他方に一致する。
したがって，この 2者は，実質的に同じものであると言える。

＊　＊　＊

以上のことから，極方程式 r =
es

1− e cos θ で表される円錐曲線上の点 Q(r, θ)を xy座
標に直すと，

Q
(

es cos θ
1− e cos θ

,
es sin θ

1− e cos θ

)
となることがわかる。
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§ 2.3 xy平面上の円錐曲線の媒介変数表示

前節 § 2.2の最後で言及した通り，極方程式 r =
es

1− e cos θ で表される円錐曲線上の点
Qの座標は

Q
(

es cos θ
1− e cos θ

,
es sin θ

1− e cos θ

)
であるから，この円錐曲線は

x =
es cos θ

1− e cos θ

y =
es sin θ

1− e cos θ

· · · · · · 3O

と媒介変数表示できることがわかる。
そして，xy平面上の任意の円錐曲線（ただし正円を除く）は，この形の円錐曲線に「適切
な回転移動」と「適切な平行移動」を施すことによって得られる。
すなわち，媒介変数表示 3Oにその移動を表す変換を施すことによって，xy 平面上の任意
の円錐曲線（ただし正円を除く）の媒介変数表示を得ることができる。

例 1

「点 C
(
−

4√
5
，− 2√

5

)
を焦点，直線 ℓ：2x + y + 8

√
5 = 0 を準線とする，離心率 1

2

の楕円」を F1 とする。この楕円の方程式は

16x2 − 4xy+ 19y2 − 240 = 0

である (脚注 6) 。
さて，楕円 F1 の媒介変数表示を求めよう。
§ 1.1における点 A,Eの座標と定数 p,q,r,s,eは，ちょっとした計算によって，それぞれ

(脚注 6) 楕円 F1 上の点 Qを (x, y)とするとき，CQの長さは CQ =

√(
x+

4√
5

)2
+

(
y+

2√
5

)2
である。

また，点 Qと直線 2x+ y+ 8
√
5 = 0との距離を dとすると，d =

∣∣∣∣2x+ y+ 8
√
5

∣∣∣∣
√
5

である。

ここで，離心率 e =
1

2
より CQ : d = 1 : 2であるから，

2 ·

√√√x+ 4
√
5


2

+

y+
2
√
5


2

=

∣∣∣∣2x+ y+ 8
√
5

∣∣∣∣
√
5

これを整理すると 16x2 − 4xy+ 19y2 − 240 = 0が得られる。
ちなみに，楕円 F1 は，楕円 x2

16
+

y2

12
= 1を原点を中心として角 +φだけ回転移動したものである（ただ

し φは cosφ =
2√
5
，sinφ =

1√
5
を満たす角）。
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A
(
−

8√
5
，− 4√

5

)
， E

(
−

16√
5
，− 8√

5

)
，

p = 4， q = 2， r = 3， s = 6， e =
1

2

と求まる (脚注 7) 。
このあと，§ 2.1と同じように円 Xと点 Lを定めて，点 Qの軌跡として媒介変数表示を求
めることもできる。しかし，それは手間がかかるので，ここでは平行移動と回転移動を利用
する。
まず，焦点 C

(
−

4√
5
，− 2√

5

)
を原点 O(0, 0)に移すために，x軸方向に +

4√
5
，y軸

方向に +
2√
5
だけ平行移動する。次に，準線 ℓ：2x+ y+ 8

√
5 = 0を y軸と平行にするた

めに，cosφ =
2√
5
，sinφ =

1√
5
を満たす角を φとして，原点を中心に −φだけ回転移

動する (脚注 8) 。この「移動後の楕円」は
x =

6 cos θ
2− cos θ

y =
6 sin θ

2− cos θ

と媒介変数表示することができる。
今度は，これをもとの楕円 F1 に戻す。まず原点を中心に +φだけ回転移動すると，

x = cosφ · 6 cos θ
2− cos θ − sinφ · 6 sin θ

2− cos θ

y = sinφ · 6 cos θ
2− cos θ + cosφ · 6 sin θ

2− cos θ

ここで，cosφ =
2√
5
，sinφ =

1√
5
であるから


x =

2√
5
· 6 cos θ
2− cos θ −

1√
5
· 6 sin θ

2− cos θ

y =
1√
5
· 6 cos θ
2− cos θ +

2√
5
· 6 sin θ

2− cos θ

となる。次に，x軸方向に −
4√
5
，y軸方向に −

2√
5
だけ平行移動すると


x =

2√
5
· 6 cos θ
2− cos θ −

1√
5
· 6 sin θ

2− cos θ −
4√
5

y =
1√
5
· 6 cos θ
2− cos θ +

2√
5
· 6 sin θ

2− cos θ −
2√
5

(脚注 7) これらを求める方法・手順はいろいろ考えられるので，ここでは割愛する。
(脚注 8) 直線 ℓの法線ベクトルのうち，長さが 1であるものとして −→

v =

(
2√
5
， 1√

5

)
をとると，角 φとは −→

v と x

軸の正の方向とのなす角である。原点を中心に −φだけ回転すると −→
v は x軸の正の方向に重なり，直線 ℓ

は y軸と平行になる。
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これが，楕円 F1，すなわち楕円 16x2 − 4xy+ 19y2 − 240 = 0の媒介変数表示である。
（例 1終）

例 2

「点 C (4，1)を焦点，直線 ℓ：x+ y− 3 = 0を準線とする，離心率
√
2の双曲線」を F2

とする。この双曲線の方程式は

xy+ x− 2y− 4 = 0

である (脚注 9) 。
さて，双曲線 F2 の媒介変数表示を求めよう。
§ 1.2における点 A,Eの座標と定数 p,q,r,s,eは，ちょっとした計算によって，それぞれ

A(3，0)， E(2，− 1)，
p = 2−

√
2， q = 2

√
2−2， r = 2， s =

√
2， e =

√
2

と求まる (脚注 10) 。
このあと，§ 2.1と同じように円 Xと点 Lを定めて，点 Qの軌跡として媒介変数表示を求
めることもできる。しかし，それは手間がかかるので，ここでは平行移動と回転移動を利用
する。
まず，焦点 C (4，1) を原点 O(0, 0) に移すために，x 軸方向に −4，y 軸方向に −1 だけ
平行移動する。次に，準線 ℓ：x + y − 3 = 0 を y 軸と平行にするために，cosφ =

1√
2
，

sinφ =
1√
2
を満たす角を φとして，原点を中心に −φだけ回転移動する (脚注 11) 。この

(脚注 9) 双曲線 F2 上の点 Qを (x, y)とするとき，CQの長さは CQ =
√
(x− 4)2 + (y− 1)2 である。

また，点 Qと直線 x+ y− 3 = 0との距離を dとすると，d =
|x+ y− 3|√

2
である。

ここで，離心率 e =
√
2より CQ : d =

√
2 : 1であるから，

·
√
(x− 4)2 + (y− 1)2 =

√
2 ·

|x+ y− 3|
√
2

これを整理すると xy+ x− 2y− 4 = 0が得られる。
ちなみに，双曲線 F2 は，反比例 y =

2

x
のグラフである直角双曲線を x軸方向に +2，y軸方向に −1だけ

平行移動したものである。
(脚注 10) これらを求める方法・手順はいろいろ考えられるので，ここでは割愛する。
(脚注 11) 直線 ℓの法線ベクトルのうち，長さが 1であるものとして −→

v =

(
1√
2
， 1√

2

)
をとると，角 φとは −→

v と x

軸の正の方向とのなす角である（言うまでもなく，φ =
π

4
+ 2nπ（n ∈ Z）である）。原点を中心に −φだ

け回転すると −→
v は x軸の正の方向に重なり，直線 ℓは y軸と平行になる。
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「移動後の双曲線」は 
x =

2 cos θ
1−
√
2 cos θ

y =
2 sin θ

1−
√
2 cos θ

と媒介変数表示することができる。
今度は，これをもとの双曲線 F2 に戻す。まず原点を中心に +φだけ回転移動すると，

x = cosφ · 2 cos θ
1−
√
2 cos θ

− sinφ · 2 sin θ

1−
√
2 cos θ

y = sinφ · 2 cos θ
1−
√
2 cos θ

+ cosφ · 2 sin θ

1−
√
2 cos θ

ここで，cosφ =
1√
2
，sinφ =

1√
2
であるから


x =

1√
2
· 2 cos θ
1−
√
2 cos θ

−
1√
2
· 2 sin θ

1−
√
2 cos θ

y =
1√
2
· 2 cos θ
1−
√
2 cos θ

+
1√
2
· 2 sin θ

1−
√
2 cos θ

となる。次に，x軸方向に + 4，y軸方向に + 1だけ平行移動すると
x =

1√
2
· 2 cos θ
1−
√
2 cos θ

−
1√
2
· 2 sin θ

1−
√
2 cos θ

+ 4

y =
1√
2
· 2 cos θ
1−
√
2 cos θ

+
1√
2
· 2 sin θ

1−
√
2 cos θ

+ 1

これが，双曲線 F2，すなわち双曲線 xy+ x− 2y− 4 = 0の媒介変数表示である。
（例 2終）

例 1 ， 例 2 からわかるように，「焦点」と「準線」と「離心率」さえわかれば，同様の
手順を踏むことによって，任意の円錐曲線の媒介変数表示を求めることができる (脚注 12) 。

あとがきに代えて
本稿の執筆中に思わぬ発見があったので，最後にそれを記しておく。
まずは「（正円でない）楕円」について。点 A,C,E，直線 ℓ，および正の数 p,qを，§ 1.1と
同様に定める。また，この楕円の中心をMとする。

(脚注 12) 正円に対しては，s → ∞ とすることで，媒介変数表示を与えることができる。詳細は割愛するが，中
心 (x0, y0)，半径 r の円の媒介変数表示は，y 軸に平行な準線に対する楕円から s → ∞ とした場合には{
x = r cos θ+ x0

y = r sin θ+ y0

となる。
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CAE

ℓ

p q

M

このとき，ちょっとした計算によって，CM,AM,EMの長さが，p,qを用いて次のように
表されることがわかる。� �

CM =
q2

p− q
， AM =

pq

p− q
， EM =

p2

p− q� �
次に「双曲線」について。点 A,C,E，直線 ℓ，および正の数 p,qを，§ 1.2と同様に定める。
また，この双曲線の中心をMとする。

CA

ℓ
p q

M E

このとき，ちょっとした計算によって，CM,AM,EMの長さが，p,qを用いて次のように
表されることがわかる。� �

CM =
q2

q− p
， AM =

pq

q− p
， EM =

p2

q− p� �
そして，「（正円でない）楕円」と「双曲線」の両者において，次の興味深い性質が得られ
るのである。� �

• CM : AM = AM : EM = e : 1　（∵ q : p = e : 1）� �
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